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Abstract—Not enough robots are used in the fight against ocean
plastics. ROVs controlled by human operators can be used to
collect ocean waste, but human depth perception underwater
is obscured, especially on 2D screens. This can be made worse
when objects are transparent and backgrounds are near blank,
common in underwater scenes. We present work on an underwa-
ter augmented, or mixed reality, telepresence system that utilises
stereo vision for 3D plastic bottle object detection and audiovisual
aids to assist with ROV telemanipulation during plastic waste
collection. Initial tests with an unsynchronised pair of stereo cam-
eras showed that block matching algorithms had difficulty finding
matches with transparent materials. Using a synchronised stereo
camera and a YOLO-based model, qualitative results are promis-
ing. We hypothesise that with our mixed reality telepresence
system we can increase seafloor plastic bottle collection against
traditional ROV end effector collection operation whilst reducing
cognitive load. Supplementary material, including demo videos,
can be found here: https://github.com/aaronlsmiles/ATSEA.

Index Terms—ocean plastics, stereo vision, mixed reality,
telepresence, object detection, ROVs

I. INTRODUCTION

Most of the current efforts to clean up ocean plastics have
focused on surface litter, which accounts for only 1% of all
ocean plastic. An estimated 99% of ocean plastics are below
the surface or sink to the seafloor, according to the TOPIOS
(Tracking Of Plastic In Our Seas) project1. Plastic bottles are
a big contributor, with around 8 million tons of them entering
the ocean each year.

To properly clean our oceans, robots will need to be
involved. No one solution will solve the issue, and both AUVs
and ROVs will be required, since each has its advantages and
disadvantages. The SeaClear project2 deploys collaborative
AUVs for cleanup, while the Rozalia Project3 deploys a small
ROV that is controlled by a human operator with a system
that includes a small 2D monitor. While [1] make the case
for AUVs, we argue that ROVs are overlooked and human
intervention will be required in a number of situations.

1TOPIOS: Tracking Of Plastic In Our Seas, European Research Council
Starting Grant, 2017-2022, http://topios.org/

2SEACLEAR: Search, Identification and Collection of Marine Litter
with Autonomous Robots, Horizon 2020 grant agreement No 871295,
https://seaclear-project.eu/

3Rozalia Project, https://www.rozaliaproject.org/innovation-technology

Fig. 1. Demonstration of system in air. Left: 2D custom detector in Unity
showing 2D bounding boxes of detected bottles and AR end effector (recorded
from 2D screen). Right: 3D custom detector in Unity showing 3D bounding
boxes and AR end effector (recorded from VR HMD screen).

The biggest contributor to plastic waste is ghost nets, in
which other plastic waste, as well as sea creatures, can get
caught. These pose a significant entanglement risk to under-
water vehicles too, which would require human intervention.
The manipulators on ROVs would be suited to cutting the
robot and potentially marine life free of any entanglement.

We interviewed ROV operators and found that they report
the “underwater illusion” that affects their sense of depth
underwater, especially on 2D screens. Our hypothesis is that
this would be further affected when dealing with transparent
objects, such as plastic bottles, and aim to answer the question
of how we can improve the efficiency of transparent object
collection with ROV manipulators using a mixed reality (MR)
telepresence system that utilises stereo vision and object
detection for providing MR audiovisual (AV) aids.

We focus on techniques to support manual collection using
ROVs, but our clear bottle perception research will be useful
to future autonomous research, such as reinforcement learning
techniques for mapping seafloor litter [2].

Models have been deployed for detecting sub-surface ma-
rine litter. The authors [1] focus on litter floating in the water
column, whereas, [3] focus on seafloor plastics.

We have developed a MR system for simulated plastic waste
collection with a virtual end effector (EE) using synchronised
stereo vision and a convolutional neural network (CNN) for
real-time bottle detection (YOLOv7-tiny) in Unity. Demo
videos can be found at: github.com/aaronlsmiles/ATSEA.

https://github.com/aaronlsmiles/ATSEA
https://github.com/aaronlsmiles/ATSEA


Fig. 2. System overview drawing depicting a tank containing water and plastic
bottles (or other ocean waste), the simulated gripper, stereo camera facing into
the tank from outside, which is connected to a PC running Unity and the ZED
SDK, which is also connected to the haptic controller and VR HMD.

II. IMPLEMENTATION

A. System Overview

The stereo vision-based teleoperation interface built for
this study comprises a ZED Mini, ZED SDK, Unity, Geo-
magic Touch, and a virtual reality (VR) head-mounted display
(HMD). A sketch (Fig. 2) shows the underwater experimental
setup. The stereo camera will give an egocentric view into
a tank that can be viewed through a VR HMD, which
emulates the view of an ROV operator. The tank contains
physical objects, and the haptic-controlled simulated gripper
is augmented in the scene.

B. Experimental Protocol

For user studies, the IPD of each participant will be checked
to set the HMD lens distance correctly to avoid skewed results
from potentially blurry views in VR. The task time limit (1
minute) will remain the same across studies.

The task goal will be to reach each bottle with the centre
of the end effector (EE) and click a button on the haptic
controller to emulate the gripper being triggered to close/grasp.
This must be done without going too far, that is, knocking the
object (Figure 37, right), and will be performed in different
scenarios:

i) 2D screen with haptic controller but without visual aids,
ii) HMD with haptic controller and no visual aids,
iii) HMD with haptic controller and visual aids.
Upon completion of each task, participants will complete

a usability and cognitive load assessment/survey. The system
will also record the following measurements:

• Time to complete: total time taken to complete task(s).
• Failed attempts count: number of times the participant

either clicked the gripper close button when the object
is not within the gripper fingers or the EE is positioned
within the object, signifying that the object is knocked.

• Fail attempt type: 0) incorrect grasp area, 1) knocked
object.

• Time-out fail: failed to complete task(s) within the time
limit.

In-air baseline tests will be performed, followed by underwater
tests. Cameras are optimised for viewing underwater scenes

Fig. 3. Sample of synthetic underwater images (middle and right columns)
created from one of the air stereo images (top, left) and its depth map (bottom,
left) using [5].

through glass, and the same user tests are repeated in the
underwater scene with objects submerged in the tank.

III. CONCLUSION

We [4] first tested an unsynchronised stereo vision system
on transparent and opaque plastic and metal materials. The
results showed that opaque bottles were much easier to detect
than transparent bottles with an RMSE of 1.01 cm for opaque
plastic bottles and 2.03 cm for opaque metal bottles, but
16.34 cm for transparent plastic bottles.

The newly developed synchronised stereo system was qual-
itatively assessed, as can be seen in Fig. 1. The distance of the
EE from the stereo cameras matched that of the object detector
distances. This is better illustrated in the 3D version, where
the occlusions are present and demonstrate that the simulated
object’s environment scaling matches that of the real world.
However, we hypothesise that in-water tests will present less
accurate detection results than in-air, hence, we will retrain the
detection model with synthetic underwater images of bottles
created using [5], as shown in Fig. 3.

Furthermore, initial qualitative tests support the hypothesis
that 3D displays provide enhanced perception, as it is much
easier to evaluate the position of the EE in the VR HMD, even
without the visual aids. However, this will be validated in the
user studies that will form part of the final paper.
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